Saturday, February 13, 2010

Dissymmetry of lift

One cannot begin to talk about the mechanics of helicopters until the problems associated with rotary wing aerodynamics are understood. When the first rotary wing pioneers started trying to make a helicopter fly, they noticed a strange problem.

The helicopters rotor system would generally work just fine until one of two things happened: Either the aircraft began to move in any given direction, or it experienced any sort of wind introduced into the main rotor system. Upon either of these events, the rotor system would become unstable, and the resultant crash would usually take the life of the brave soul at the controls. The question then was; Why does this happen? The answer is what we refer to today as "Dissymmetry of lift".

What "Dis-Symmetry of lift" means is, when the rotor system is experiencing the same conditions all around the perimeter of the rotors arc, all things are equal, and the system is in balance. Once the system experiences a differential in wind speed from any angle, it becomes unbalanced, and begins to rotate. Take for instance forward flight. Imagine a two bladed rotor system spinning at 100 MPH.

The blade moving toward the forward end of the aircraft is going 100 MPH forward, and the blade moving toward the back of the aircraft is travelling at 100 MPH in the other direction. This is just fine when the aircraft is not moving or is in a no wind condition. It is experiencing 100 MPH of wind in all directions, so it is totally in balance. Once the aircraft moves forward, it begins to change this balance. If we travel 10 MPH forward, then the forward moving, or advancing rotor blade, is experiencing 110 MPH of wind speed, and the rearward, or retreating blade, is experiencing only 90 MPH of wind speed.

When this happens, we get an unbalanced condition, and the advancing blade experiencing more lift wants to climb, while the retreating blade experiences less lift and wants to drop. This is where we get the term "Dis-Symmetry of lift". The lift is not symmetrical around the entire rotor system.

How do we compensate for this situation? We compensate by allowing the rotor to flap. By allowing the advancing blade to flap upward, and the retreating blade to flap downward, it changes the angle of incidence on both rotor blades which balances out the entire rotor system. As you can see in this simple graphic, there are a few ways to allow for blade flapping.

One is to allow the blades to flap on hinges (Articulated rotor system). Another way is to have the whole hub swing up and down around an internal bearing called a trunion (Semi-rigid rotor system). Unfortunately, we can not compensate completely for dis-symmetry of lift by using blade flapping. Once the aircraft gets to a certain airspeed, and the rotor had flapped as much as it possibly can, then "Retreating blade stall" may be experienced. In retreating blade stall, the retreating blade can no longer compensate for dis-symmetry of lift, and the outer portions of the blade will "Stall".

This situation, when not immediately recognized can cause a severe loss of aircraft controllability. This is a major airspeed limiting factor for helicopters. For many years, aeronautical engineers have tried to figure ways to eliminate this problem and increase the forward airspeed for single rotor helicopters. Although many breakthroughs have been made, the manufacturers of single rotor helicopters are usually not willing to change the entire design on their products because of the extra costs involved for little airspeed payoff. Most have resigned themselves to slower airspeeds for their aircraft, at a lower cost and less maintenance.

No comments:

Post a Comment